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Non-uniform sampling in multidimensional NMR shows great promise to significantly decrease experi-
mental acquisition times, especially for relaxation experiments for which peak locations are already
known. In this paper we present a method for optimizing the non-uniform sampling points such that
the noise amplification and numerical instabilities are minimized. In particular, the minimum singular
value of the Moore-Penrose pseudo-inverse is maximized using sequential semi-definite programming,
thereby minimizing the worst-case errors. We test this method numerically on a set of assignment data
from the proteins ubiquitin (in both folded and unfolded states) and Rla (119-244), a cAMP-binding reg-
ulatory subunit of protein kinase A (PKA). This test indicates that optimizing more than doubles the effi-
ciency over random selection of points, and the efficiency increases as we go to higher dimensions.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

With modern NMR methods, we are able to assign all the car-
bon, nitrogen and hydrogen resonances in large proteins—thou-
sands of nuclei in all. The main tool in this work is
multidimensional NMR, in which overlapping peaks are resolved
by going to higher dimensions [1-3]. For instance, amide protons
are sorted according to the chemical shift of the amide nitrogen,
then further sorted by shifts of the a-carbon, the carbonyl carbon,
etc. The aim of the multidimensional experiments is to resolve all
the signals, so there is a unique peak in the spectrum for each
group of nuclei. Once the structure is established, dynamics can
be measured by embedding a relaxation experiment into the mul-
tidimensional pulse sequence and following the intensity of the
peak as a function of delay times.

If all signals are clearly resolved, then a full assignment can be
made in a straightforward fashion. Overlaps and ambiguities may
have to be resolved by going to higher dimensions. However, if
the spectra are acquired and reconstructed using the standard Fou-
rier methods, then the time required for the experiment increases
exponentially with the number of dimensions. At the moment,
three and four dimensions represent a practical limit, with exper-
iments that can last several days.

There are two different problems here. One is the resolution and
assignment of all of the unknown peaks in a new sample. The other
is the study of dynamics in a protein for which the assignments are
known. The same Fourier transform methods can be used for both
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applications, but there are more efficient ways of obtaining the
information.

For the first problem, the assignment problem, there has been
considerable recent interest in reduced dimensionality methods,
which sample the signal in the time domain differently [4-10,29].
Depending on the complexity of the spectrum, this may lead to dra-
matically shorter acquisition times. For systems with closely-
spaced peaks, many samples will be needed to resolve them, and
the number approaches that of standard Fourier methods. There
is no general approach that will work successfully in all cases, since
we do not know a priori how crowded the spectrum will be.

We offer a solution to the second problem, in which the fre-
quencies of the peaks are known, and we wish to monitor their
intensities as a function of some delay time. Dynamics is typically
probed in this way by measurements of T; and T, [2] with the
inversion-recovery and CPMG experiments, respectively. If we
use the same methods as used for the structural assignment, this
multiplies the spectrometer time needed by the number of delay
times used. If we only want to measure their intensities when
we already know the positions of the peaks, we can exploit this
information. Non-uniform sampling in the time domain can save
significant amounts of time.

Inarelaxation experiment, there are two types of sampling times:
one associated with the relaxation experiment, and one with the res-
olution of the different frequencies. Each of these can be optimized:

(1) When an experiment (a single FID or multidimensional
experiment) is repeated with different delays inserted for
the purposes of measuring decay. The number and timing
of such delays should be optimized.
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(2) Within a single multidimensional experiment, delay times
are inserted for the purpose of creating phase variation in
indirect dimensions. The number of FIDs and the delays for
each of those FIDs should be optimized.

The first problem was studied in [11-13]. The second problem
has been addressed without using numerical optimization of sam-
pling times by all of the reduced dimensionality methods men-
tioned above. In particular, [14] introduces the Cramér-Rao lower
bound as a measure of experiment design and uses it to compare
linear and nonlinear sampling for small numbers of peaks. Simi-
larly, 2D NOESY spectra were used to extend the results of a 3D
NOESY-NOESY experiment [15] by the appropriate use of 2D mix-
ing times.

In this paper we propose to use numerical optimization for this
second problem, to give us a “best” choice of sampling points. The
novelty in this paper is the evaluation of a trust-region, sequential
semi-definite optimization approach on assignment data taken
from real proteins, and numerical simulations designed to quantify
the sensitivity of the designs to expected machine variations and
measurement errors.

In the future, it may be possible to combine these two design
problems and design a single experiment with delays used for both
purposes, but we have not attempted it in this paper.

2. Theory

There are two fundamentally different optimization problems
involved in designing protein NMR experiments. In the problem
of determining peak frequencies, which we do not address in this
paper, the peak frequencies are not known. In this case, full spectra
are reconstructed. Faster experiments undersample the time do-
main causing artifacts in the spectra. The point spread function
(psf) is the standard measure of the undersampling artifact. Infor-
mally, it is the spectrum one would observe if the true spectrum
were a single discrete point, or a delta function for continuous
transforms. The psf isolates the effects of poor sampling from all
other effects. For example, in projection reconstruction, [16],
undersampling causes star-like artifacts. This is assuming a simple
reconstruction, but we also seek to reduce the artifacts, because
they can obscure neighbouring peaks. See [7] for an example of
an optimized undersampling pattern.

The second problem is the determination of relaxation rates. In
proteins, differing relaxation rates along the backbone can be
used to infer function, and even change as the protein undergoes
conformal changes, so determining relaxation rates as quickly as
possible is desired. In this case, however, the peak frequencies
are known, so the appearance of the spectra is much less impor-
tant. The only new information at this point is the peak heights or
volumes, and specifically how they change as a function of relax-
ation delay time.

In a conventional quadrature experiment, the peak amplitudes
(areas) are each different linear combinations of the measured sig-
nal. For example, if there is only one peak in the spectrum, then its
amplitude is proportional to the strength of the first data point. The
relative signal to noise ratio varies with e~/Tz, where t is the time of
the sample, and T is the observed decay rate.

If there are two peaks, a and b, in a one dimensional experiment,
with Larmor frequencies w, and @, and relaxation times T;, and
T;,, then the signals are mixed in the time domain. Given samples
at times t; and t;, the samples are
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We can rewrite this to emphasize the linearity as
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and for future reference, we define S to be the signal generation
matrix:
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A priori, S depends on the values of T,, but since T,s vary in a lim-
itedrange, itisreasonable todesign an experiment with approximate
T, values. Numerical tests presented in this paper show that the opti-
mal designs are insensitive to this parameter.

For a real system, the matrix S may not be invertible, so it may
not be possible to determine the peak amplitudes from two data
points. Even if it is possible, the signal to noise ratio depends on
the singular values of this transformation. Recall that the singular
values of a matrix S are defined to be the eigenvalues of S'S where *
means conjugate transpose. This is defined whether S is square or
rectangular, and, in fact, we expect to have more samples than
peaks, so the signal generation matrix in 2 will in general have
more rows than columns.

The worst case in experiment design is easy to understand.
With a bad choice of ty, t,, the matrix in 2 will be singular, caused
by linear dependence of the rows, and we can never recover both
peak heights. In this case one of the singular values is 0.

To get a bound on the best case, note that the real exponentials
associated with T, decay are always less than one, but for short
times will be close to one. For a rough estimate, we ignore the de-
cay. This results in
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expanding into real and imaginary parts, we see the symmetry:
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and with some algebra we see that the product of the eigen-
values is 4 — x> — y?. The maximum 4 is realizable by choosing
t; and t; such that the off-diagonal elements are zero, in
which case the eigenvalues are two. This result can be inter-
preted in terms of statistics. The matrix S'S proportional to
the inverse of the covariance matrix, which is diagonal if the
peak estimates are not correlated, and hence give the maxi-
mum information.

In general, the maximum eigenvalue is bounded by the number
of samples, hence our objective, the minimum eigenvalue, is also
bounded by the number of samples. Let n be the number of sam-
ples, m the number of residues, and r the dimension of the exper-
iment. The matrix S°S has size m x m, while the value of the matrix
elements, and the computational cost of constructing them are
bounded by n, the number of samples.

The exact optimum depends on the T5s, and cannot be calcu-
lated analytically, so we report our efficiency in terms of how close
a sampling pattern gets to this theoretical upper bound without
relaxation, which is the same as n, the number of samples. Effi-
ciency is a relative measure of accuracy. Accuracy, defined as the
inverse of the expected error bars on reported peak amplitudes,
can always be increased by collecting more samples, whether
through averaging or collecting data at different delay times. Effi-
ciency is the ratio of expected accuracy divided by the number of
samples collected.

For two peaks, it is possible to select good sampling times by
inspection, and invert the transformation by hand. For many peaks,
and more samples than peaks, numerical methods are required,
based on the Moore-Penrose pseudo-inverse. We seek to maximize
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the signal to noise in this process. To define it and see the effect on
noise, write the signal generation equation as

h(ty) f(wy) €
o |=s| o 4] (4)
h(ta) flwm) €n
where S is the complex n x m matrix
Sij = e/ 1o,

and the vector of €s represents the measurement noise.
To solve for the effect of noise on the amplitude estimates, mul-
tiply both sides of 4 by the adjoint, S* = S”, and solve for f.
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Assuming that sufficiently many samples have been collected to be
able to reconstruct the peak amplitudes, S'S is invertible, so we can
write this as
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where the first term on the right hand side is the estimate, and
the second term is the apparent noise. The linear system used
for the estimation (S*S)™'S" is known as the Moore-Penrose pseu-
do-inverse. This shows the role of S in amplifying the noise. The
factor S°S is the Fisher information matrix of design theory, and,
as noted above, proportional to the inverse of the covariance ma-
trix, and the key to formulating an optimization problem. We can
maximize the signal to noise ratio in different ways, depending on
whether we are concerned with the experiment overall, or with
individual peaks. If we need to measure each individual peak
independent of the other peaks, we are concerned with the
worst-case signal to noise, which corresponds to the minimum
eigenvalue of S'S.

We can weigh the efficiency of existing sampling patterns using
this measure. In statistics this is called E-optimality, [17]. In the
limit when the number of samples is very large and well distrib-
uted, the eigenvalues are all the same and E-optimality is equiva-
lent to a more commonly used statistical measure, D-optimality,
which considers the product of the eigenvalues, rather than the
minimum. Geometrically, D-optimality minimizes the volume of
the uncertainty ellipsoid (higher dimensional error bar), whereas
E-optimality minimizes the radius. We believe that for the T,
experiments there is enough signal to noise that we can reduce
experiment times to the point where we are far from the high-
sampling regime and E- and D-optimality provide different solu-
tions. In this case, minimizing the worst case expected error
(including apparent false correlations) is the right criterion.

Example: Dense Sampling. The easiest case to understand is
dense sampling, in which the spectrum is reconstructed using a
FFT. Since all the eignenvalues of the Fourier transform have norm
1, the noise level in the reconstructed spectrum is constant. So all
peaks with equal widths will be effected by the same measurement
noise. Other sampling patterns can be analysed numerically, and
we report below that they all have this property if they include suf-
ficiently many samples.

2.1. Efficiency

Numerically, we define efficiency as the minimum eigenvalue of
S*S divided by the number of samples. With this definition, the effi-

ciency is proportional to sampling time requirements. It would
have been equally natural to report efficiency in terms of ratios
of standard deviations, which can be obtained by taking the square
root of the reported efficiencies.

For the Fourier Transform applied to dense sampling, and with
peak positions corresponding to all grid points, all eigenvalues of
S*S are equal to the number of samples, which is equal to the num-
ber of frequency grid points. So the peak efficiency (without relax-
ation) is achieved.

This definition of efficiency does not take into account extra
precision in peak amplitude obtained by using several points in
the spectrum to calculate an area, since this will depend on oper-
ator choices.

2.2. Optimization problem

[18] introduced a method of optimizing a set of steady-state
MRI experiments with respect to expected noise. The same eigen-
value maximization approach using a semi-definite constraint can
be adapted to the present problem. The present problem and the
problem in [18] are both part of a general optimization problem
of NMR experiments. In the previous work, we considered the ef-
fect of pulse sequence parameters on the generation of a steady
state, and ignored the effect of sampling in frequency space (re-
ferred to as k-space in Magnetic Resonance Imaging), and the effect
of changing repeat times. In this paper, we ignore the pulse se-
quence design issues, and focus on the sampling in the indirect fre-
quency dimensions.

Maximizing the minimum eigenvalue of S*S can be formulated
as a semidefinite programming problem: given parameters w; € R,
i ©
subject to S'S— 1l > 0. (7)

The inequality > in 7 is a semi-definite (matrix) inequality, see
[19]. The variable T which is equal to the minimal eigenvalue of S°S,
was introduced to put the problem in the standard form. The effect
of this inequality is to require the eigenvalues in 7 to be non-neg-
ative, which is equivalent to bounding the eigenvalues of S*S below
by 7. The practical importance of formulating the problem in this
way is that there are a growing number of open-source or academ-
ically available solvers for semi-definite problems, [20]. Available
solvers cannot handle problems in quite the level of generality re-
quired for our work, but the problem may be decomposed using a
trust-region method.

A trust-region method is a standard iterative approach to non-
linear, possibly non-convex optimization, see [21]. At each itera-
tion, the function to be optimized is approximated by a simpler
function. The approximation is then minimized within a “trust re-
gion”, after which the original function is evaluated. If this results
in no improvement, one shrinks the trust region, and tries again. If
the improvement is better than a threshold value, one expands the
trust region for the next iteration. For details of this formulation,
see the technical report [22].

Without further insight into practical NMR experiments, this
problem would not be solvable by current-generation software.
Fortunately, all NMR experiments have a directly acquired dimen-
sion, in which sampling is dense relative to sampling in other
dimensions, and Fourier methods are cheap.

2.3. One densely sampled direction

In real NMR experiments, there is always a directly acquired
dimension. We have assumed that dense FIDs are acquired for
hydrogen, but this is not required. Using this structure, the dimen-
sion of the subproblems can be significantly reduced. Samples are
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organized in dense lines parallel to the directly sampled direction,
so only the first sample point, (0, t;,, t;3, .. .) in each FID needs to be
modelled. The other points in the FID are
(1,82, 3,...),(2,t2,t3,...),... in the appropriate units.

It follows that the matrix S'S becomes

n/ng

np—1
(S*s)ij _ (Z e\/_l-s-zi(wjow,;g)) <Z eﬁ(t,,iji)> (8)
=1

s=0

where ng is the number of samples per FID, and § is the inter-sample
spacing. This reduces the cost of constructing each element of S*S
from rn to (r — 1)n/ny.

The resulting optimization problem is still too large for biolog-
ically-interesting proteins, but we have more structure to exploit.
The first factor in 8 approaches zero on off-diagonal elements
(i#j) as the peak frequencies in the direct dimension become sep-
arated, because this term is the dot product of Fourier basis func-
tions. These functions are orthogonal as continuous functions,
and nearly orthogonal when the corresponding peaks are visually
separated in the corresponding spectrum. This allows us to decom-
pose the matrix S'S into diagonal blocks, corresponding to regions
of the spectrum with overlap, ignoring very small components on
the off diagonal. In terms of multidimensional spectra, we would
not expect to have trouble separating peaks if they are already
widely separated in the 1D hydrogen spectrum.

We exploit the fact that not all peaks overlap in the directly ac-
quired spectrum by dividing the peaks into groups, such that over-
lap only occurs within groups. If each group can be resolved
separately, then we can resolve all peaks. The groups are indexed
by the ‘fat’ hyperplanes they occupy. Let P be the set of such planes.
Since the directly acquired dimension is densely sampled, it is ex-
pected that the FIDs optimized for one plane p provide information
about all other planes, further improving efficiency.

Another way of thinking of this is that since the directly ac-
quired dimension is densely sampled, it would be possible to per-
form the Fourier transform in this dimension and consider each
frequency in this dimension separately, as if it were possible to
do a number of (r — 1) dimensional experiments each involving
only a single set of peaks which overlap in the direct dimension.

This reduces the number of variables in the problem from rn to
(r — 1)n/ne, and reduces the size of the most difficult element of
the optimization problem, the semidefinite constraint, from
m x m to m, x m,, where ng is the number of samples per FID, r
is the number of dimensions, and m, is the number of peaks as-
signed to plane p € P, the set of ‘fat’ hyperplanes. Of course, instead
of one problem, one must solve a separate problem for each plane.
The much smaller problems can be solved by existing software.

We will use the union of the sets of points as our experimental
design. Solving different problems for each plane does not take into
account that a single set of FIDs are acquired. By optimising sets of
sample times for each plane, we are underestimating the efficiency
of the sampling by not taking into account the sampling times ac-
quired for other planes. Practically, this is only important if the
number of samples grows large, which we have not observed in
our numerical problems.

In the current implementation, we use the frequency in the di-
rectly-acquired direction to cluster the peaks. Hierarchical cluster-
ing is a general method which starts a cluster with a single peak
and iteratively adds peaks which overlap any peak in the cluster
until no more peaks need to be added. Hierarchical clustering
works for the benchmark problem, but it is not optimal for very
dense spectra in which such clusters are so big that most pairs of
peaks within a “fat” plane do not themselves overlap. How to opti-
mally cluster the peaks is an open problem for dense spectra, but
workable solutions are available. Our current best solution uses
two steps: first, cluster peaks with substantial overlap, and in a

second step add points from neighbouring clusters when those
points somewhat overlap points in the cluster. This approach is
applicable to all spectra, including spectra without any gaps, but
using it increases the amount of computation by assigning some
peaks to more than one fat plane. Since any set of mutually over-
lapping peaks is contained in some fat plane, the reported effi-
ciency will be a lower bound on the true efficiency.

To optimize sampling in such a clustered plane of peaks, we
have tried two approaches: (1) budgeting a fixed number of sam-
ples and optimizing the sampling times; and (2) setting a target
efficiency, and a floor on the number of sampling points, optimiz-
ing an initial set of sampling times corresponding to the floor, and
until the target is met, adding new sampling points one at a time
and reoptimizing the set of sample times. The second method
could require an arbitrary number of samples, and is, not surpris-
ingly, much slower, but always achieves the required efficiency
with a minimum of samples. In this paper, only the first method
is used. For a numerical comparison, see [22].

2.4. Sentinel points

Using prior information about the model in optimizing the solu-
tion of an inverse problem introduces the risk that the prior infor-
mation may become invalid. The more efficient the optimized
solution, the greater the danger. One way of detecting model fail-
ures in this problem is to add sentinel points: ;s not correspond-
ing to defined peaks. If the model is valid, the estimated signals at
these points will be pure noise. Depending on the possible sources
of failure, the co-ordinates of the sentinel points can be chosen to
detect such problems. To test for machine failures, arbitrary points
can be used. In the numerical examples in this paper, two points
were added to each of the clustered planes. The projections of
the sentinel points onto the hyperplane orthogonal to the directly
acquired direction were the same for all planes, and the points
were chosen to be well within the convex hull of the projected
points, but well separated from actual peak values.

3. Numerical results

In this section we use numerical experiments to explore the
sensitivity of the proposed method to variations in parameters,
and the applicability of the current implementation to realistic
proteins. There are two questions: (1) can we optimize for realistic
proteins repeatedly, and (2) how sensitive are the designs to
changes in parameters (primarily peak frequencies, but also relax-
ation times). We also address the effect of total sampling time,
which is a user-controllable parameter, on the sensitivity of the
design.

The group of Dr. Giuseppe Melacini provided us with assign-
ment tables of protein Rlo (119-244), a cAMP-binding regulatory
subunit of protein kinase A (PKA) [23-26]. We also optimized
ubiquitin, since published data are available in folded and dena-
tured versions, which allows us to evaluate the effect of overlap.
We used the Rla data to investigate the sensitivity of this method
to different constraints, design choices and parameter uncer-
tainty. Having extracted good design settings from these experi-
ments, we tried to optimize sample times for folded and
denatured ubiquitin.

To test our optimization approach, all algorithms were imple-
mented in C, calling the library CSDP 2.3. Resonance frequencies
from an assignment table for the protein Rl (119-244) were used.
Not all frequencies for all residues were given, and these residues
were ignored, leaving 113 points. Some frequencies could not be
determined because of overlap, these can usually be resolved in
higher dimensions. If the peaks are not of interest, one or more
peaks can be added to estimate the overlapped peak so that their
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signals do not contaminate other peak measurements, but this is
not required for benchmarking the optimization algorithm.

Since reaching high levels of efficiency with very sparse sam-
pling will make higher dimensional experiments practical, we re-
peated most of the numerical tests with multiple dimensions,
using the seventeen PKA residues with six recorded resonance fre-
quencies (corresponding to hydrogen, nitrogen, and four carbons).

The lower dimensional experiments used the first resonances in
the order listed.

3.1. Repeatability

In the first experiment we consider a three indirect dimensional
(i.e. 4D) experiment, and took the nine peaks in the first clustered
plane. In Fig. 1 the numerical optimization method consistently
converges to 100% efficiency, and the efficiency as a function of
the number of sample times is much less variable than the results
of simple greedy optimization.

In Fig. 1 the red (+) efficiencies are the result of initially select-
ing eight random sets of nine sampling times and plotting the cal-
culated minimum eigenvalue, and at each subsequent step trying
eight new random sampling points and keeping the one which re-
sults in the largest minimum eigenvalue. In addition to this simple
greedy algorithm, the green (x) points plot the efficiencies which
initially resulted from applying the trust region method to three
sets of nine, and on subsequent iterations, taking the best result
after adding eight new random sampling times to each set one at
a time and re-running the trust-region method on the whole set
of points.

What is most important here is not the approach to 100% effi-
ciency, nor the slowing improvement of greedy optimization, but
the large gap between the two methods for very small numbers
of sample points. For very sparse sampling, numerical optimization
enables significant reduction in sampling with much lower loss of
efficiency, and therefore higher signal to noise.

We use the 17 peaks with all six resonance frequencies as our
problem for all the numerical experiments, unless stated
otherwise.

3.2. Effect of dimension, initial sampling pattern
To test the efficiency of existing sampling patterns and the sen-

sitivity of the optimized pattern to the initial distribution of sam-
ple times, we randomly chose sets of 40 initial sampling times

100%

80% = i =

60% 4

40% |- 4

20% E

I I I I
10 20 30 40

Fig. 1. Numerical optimization shows consistent results with different starting sets,
and is much more efficient for very small numbers of samples. Shown are efficiency
for infinite relaxation times. Sample points were added one by one, and are plotted
on the horizontal axis, starting with 9 samples (also the number of peaks). The
efficiency is plotted on the vertical axis.

from uniform and exponential distributions in the range
[0 ms20 ms], and also chose random radii to use in radial sam-
pling patterns, but the results for radial sampling are not shown
since they were indistinguishable from uniform distributions. Effi-
ciency was measured and then optimized against the same set of
random T;s in the range of 200 ms for the 17 peak set. The expo-
nentially distributed initial points were generated using a decay
parameter (4) of 1/200 ms. Although numerically the exponen-
tially distributed points were better than random, see Fig. 2, the
difference is not significant relative to the effect of numerical
optimization.

3.3. Sensitivity to peak frequencies

We evaluate the sensitivity of the optimized sampling trajecto-
ries to peak frequencies similarly.

(1) Peak frequencies, and optimized sampling times from the
last test were taken.

(2) The peak frequencies were randomly perturbed by normally
distributed differences, generated for each of 10 different
standard deviations.

(3) The efficiency for each set of perturbed values was calcu-
lated, and plotted as a function of the standard deviation
of the perturbation used (Fig. 3).

Fig. 3 shows that optimized sampling is sensitive to variations
in peak frequencies. For these methods to work it is important that
assigned frequencies are accurate to within 10 Hz.

A densely sampled experiment is optimal for all discrete fre-
quencies generated by the FFT. At some point, adding additional
sample points will reduce the sensitivity of the design to
changes in peak frequencies. Unfortunately, small changes (up
to doubling) the number of sampled times has little effect on
the sensitivity to peak locations. To determine this, we mea-
sured the efficiency of an optimal design for frequencies ob-
tained by perturbing the originals using random deviations
with standard deviation 10Hz, for designs using 40, 50, 60
and 70 sets of delay times. In Fig. 4, we see that this has no
significant effect.

3.4. Sensitivity to maximum delay time

In conventional experiments, the maximum delay time deter-
mines resolution, and is chosen with this in mind, but the maxi-
mum delay time will also effect the sensitivity to errors in peak
frequencies, because in our model frequencies are always multi-
plied by delay times. To test this sensitivity,

(1) Different sets of sampling times were generated, uniformly
distributed over the ranges [05s,2.55],[05,55],[05,10 s] and
[05,205].

(2) Each set of sampling times was optimized.

(3) The peak frequencies were perturbed by normally distrib-
uted differences of magnitude 80 Hz.

(4) The efficiency of the original sampling pattern with per-
turbed values were calculated, and plotted as a function of
the maximum delay time in Fig. 5.

Note that the maximum sampling range was the initial range,
and that the optimization was not constrained to keep points in
this range. Nevertheless, more than 90% of them remained within
the initial range.

Fig. 5 clearly shows our sampling becomes more robust to vari-
ations in peak frequencies if initial sampling times are constrained
to be short. Fig. 6, which plots the attained efficiency as a function
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Fig. 2. Efficiency of optimized sampling is very slightly improved by starting with exponential sampling. The efficiency of the initial exponentially and uniformly distributed
sampling patterns is connected to the efficiency after optimization, for different numbers of indirect dimensions. Each colour corresponds to the efficiency of one set of

sampling times before and after trust-region optimization.

0.8 ]

0.6

04

02

0 I I I I I I I
0 10 20 30 40 50 60 70 80

Fig. 3. Efficiency of optimized sampling is sensitive to variation in peak frequencies.
The efficiency is plotted on the vertical as a fraction of the theoretical maximum is
plotted against the standard deviation in Hz for each number of indirect
dimensions.

of maximum delay time, shows that efficiency is not compromised
with very short sampling ranges. Note that sampling times were
constrained in the initial generation, but during optimization,
some sampling times exceeded the initial constraint. Nevertheless,
at least 90% of samples remained in the constrained interval, and
no sample times exceeded the initial limit by a factor of two. Add-
ing constraints degrades performance of the optimizer, and it was
felt that there is no reason to make the maximum sample time a
hard limit.

3.5. Sensitivity to T,

We first consider the effect of relaxation on the design problem.
The method we propose optimizes the sampling times before the
relaxation times are known, so it is important that the results re-
main valid over a range of relaxation times. To do this we compare
the reported sampling efficiency given nominal T,s and in the case
that these T,s are inaccurate estimates, using the following
procedure:

1 T T T T T
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3
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Fig. 4. Increasing the number of samples does not make our sampling more robust
to variations in peak frequencies. The number of samples in the experiment is
plotted on the horizontal axis.
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Fig. 5. Optimized sampling patterns are more robust when the totaling sampling
range is shortened.
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Fig. 6. Shortened sampling ranges do not compromise the efficiency of sampling,
for experiments with at least three indirect dimensions. The efficiency, plotted on
the vertical axis is nearly independent of the maximum delay time, plotted in ms on
the horizontal axis.

(1) 40 initial random sampling points were generated in

[0 ms,20 ms].

(2) “True” T; values were randomly generated in the range
[150 ms,250 ms].

(3) the sampling times were optimized and the efficiency
reported,

(4) the T; values were randomly perturbed by normally distrib-
uted differences, generated for each of 10 different standard
deviations

(5) the efficiency for each set of perturbed values was calculated

(6) the efficiency as a function of the standard deviation of the
perturbation was plotted (Fig. 7).

This was repeated for experiments of dimension 3, 4, 5 and 6.
The conclusion is that the optimal design is not sensitive to varia-
tion in T3, so we are justified in optimizing sample times before the
T;s are available.

3.6. Full experiments

The full set of 113-Rla residues with measured H, N and C res-
onances was used to test the clustered hyperplane approach.

Applying the greedy random + trust algorithm to all planes
(with 2 sentinel peaks), using a single set of samples with triple
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Fig. 7. Efficiency of optimized sampling is insensitive to some variation in T5. The
efficiency as a fraction of the theoretical.

the cardinality of the plane, resulted in efficiencies shown in Table
1. Efficiency decreases as the cardinality of the plane increases.
This computation took 3 h on a 2.6 GHz, 8 Dual Core Opteron ser-
ver in a shared environment. To optimize NMR experiments which
can run days on expensive spectrometers, this is more than
justified.

When 512-point FIDS with ps sampling are collected for the un-
ion of these 360 k-space points, the sampling efficiency as mea-
sured by the minimal eigenvalue of A will be 88.2%. This number
is higher than the efficiency for the 38-peak plane because (1)
the clustered peaks are only partially overlapping, and (2) more
than half the total points optimized for other planes also
contribute.

As a final test, assignment tables for Folded and Denatured
Ubiquitin were obtained from the BMRB database, and optimized
HNCO experiments were designed using initial dwell times in the
range [0 ms, 20 ms].

As expected, the folded version is much easier to optimise for
since it has much less overlap among peaks. Table 2 shows the
division into four sets of peaks for which sampling times were opti-
mized and the net efficiency when all 185 sampling times are
combined.

The denatured ubiquitin has a much more crowded spectrum,
and conservatively clustering overlapping peaks together results
in very large planes for which the trust-region optimization
algorithm fails. Clustering only strongly overlapping peaks re-
sults in much smaller sets, but does not capture all overlapping
pairs of peaks. To resolve this problem, peaks which partially
overlap a peak in a neighbouring cluster were added to the
neighbouring cluster one by one until every pair of overlapping
peaks was contained in at least one set. The resulting overlap-
ping clusters contained 33 duplicated peaks. The efficiencies
for each clustered set was lower than for the folded case, but
the net efficiency after combining all the delay times is higher
because some of the peaks are duplicated. The denatured protein
would require almost double the sampling time, but the ex-
pected signal to noise (assuming equal molar concentrations)
would be higher than for the folded case Table 3.

3.7. Simulation

As a check on correctness of the reconstruction, and a verifica-
tion of the reported noise estimates. Data corresponding to 113
peaks with additional noise was added, and the peak values were
estimated by solving 5 using the conjugate gradient method. The
observed variances matched the results of the optimization.

4. Conclusion

This paper proposes a general model for optimizing the delay
times used in indirect dimensions. Numerical tests, based on a

Table 1

Efficiencies found by greedy random + trust method for all planes clustered from 3d
Rlot (119-244) peaks. The notation 7 + 2 means that 2 sentinel peaks were added to 7
peaks in the clustered plane.

Plane Number of peaks Number of samples Efficiency
1 7+2 26 99%

2 38+2 119 72%

3 26+2 83 82%

4 15+2 50 87%

5 22+2 71 80%

6 2+2 11 100%
Overall 104 +12 360 88%
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Table 2

Folded Ubiquitin (BMRB 5387, [27]).

Plane Number of peaks Number of samples Efficiency
1 15 40 77%

2 20 60 73%

3 20 60 77%

4 10 25 89%
Overall 65 185 85%
Table 3

Denatured Ubiquitin (BMRB 4375, [28]).

Plane Number of peaks Number of samples Efficiency
1 10 25 78%

2 16 50 47%

3 17 50 74%

4 22 80 57%

5 22 80 27%

6 11 25 72%
Overall 65+33 repeats 320 75%

truly typical set of protein data, show great promise. They also
show that for the relaxation experiment, in which peak positions
are already known, none of the existing heuristics provide signifi-
cantly better efficiency than randomly selected delay times when
compared to optimized sampling. One of the surprises in the
numerical simulations was the possibility that higher dimensions
can be acquired at lower cost than lower dimensional experiments.
At this point it is only a possibility, made possible by the fact that
higher dimensional experiments can be optimized for lower num-
bers of samples than lower dimensional experiments. At the same
time, the efficiency achieved may be lower at higher dimensions.
Efficiency is a function of dimension, maximum delay time, and
relaxation times. Ignoring relaxation, results in better efficiency
in higher dimensions. With typical relaxation times and delay
times, the efficiency is slightly reduced for higher dimensional
sampling. Given the fine balance between these factors, it is likely
that higher dimensions will win out for specimens with high levels
of signal, capable of supporting very sparse sampling, but lower
dimensional experiments will be preferred for specimens with
very low concentrations, supporting low signal to noise ratios.
We are currently pursuing experimental validation of these results.
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